

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyUploadcare 1.2.15 documentation

PyUploadcare: a Python library for Uploadcare

The most important thing for us at Uploadcare [https://uploadcare.com] is to make file uploading on
the web really easy. Everyone is used to the routine work, related to allowing
users upload their userpics or attach resumes: from installing image processing
libraries to creating folder with right permissions to ensuring the server
never goes down or out of space to enabling CDN. Feature like ability to simply
use a picture from Facebook or manual cropping are much more burdensome,
hence rare. Uploadcare’s goal is to change the status quo.

This library consists of an API interface for Uploadcare [https://uploadcare.com] and a couple
of Django goodies.

A simple Uploadcare FileField can be added to an existing Django project
in just a couple of simple steps. As a result, your users
are going to be able to see the progress of the upload, choose files from
Google Drive or Instagram, and edit form while files are uploading
asynchornously.

Contents:

	Installation
	Pip

	Get the Code

	Quickstart
	Get API Keys

	How to use it with Django?

	How to use it in command line?

	Django Widget
	Settings

	Model Fields

	Command Line Tool

	Deprecated Bits

API Reference

	Core API
	File API Resource

	File List API Resource

	File Group API Resource

	API Clients

	Exceptions

	Django Widget API
	Model Fields

	Form Fields

	Command Line Tool API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Installation

This part of the documentation covers the installation of PyUploadcare.

Pip

Installing pyuploadcare is simple with pip:

$ pip install pyuploadcare

or, if you’re into vintage:

$ easy_install pyuploadcare

Get the Code

PyUploadcare is developed on GitHub. You can clone the public repository:

$ git clone git://github.com/uploadcare/pyuploadcare.git

After that you can install it:

$ python setup.py install

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Quickstart

This page gives a good introduction in how to get started with PyUploadcare.
This assumes you have already installed PyUploadcare. If you do not,
head over to the Installation section.

Warning

Keep in mind that Uploadcare signature authentication will fail
if computer clock is not synchronized.

Get API Keys

First of all, you’ll need API keys: public and private. You can get them
at the Uploadcare [https://uploadcare.com] website. If you don’t have an account yet, you can use
demo keys, as in example. However, the files on demo account are regularly
deleted, so create an account as soon as Uploadcare catches your fancy.

How to use it with Django?

Assume you have a Django project with gallery app.

Application Setup

Add pyuploadcare.dj into INSTALLED_APPS:

INSTALLED_APPS = (
 # ...
 'pyuploadcare.dj',

 'gallery',
)

As soon as you got your API keys, add them
to your Django settings file:

UPLOADCARE = {
 'pub_key': 'demopublickey',
 'secret': 'demoprivatekey',
}

Uploadcare image field adding to your gallery/models.py is really simple.
Like that:

from django.db import models

from pyuploadcare.dj import ImageField

class Photo(models.Model):

 title = models.CharField(max_length=255)
 photo = ImageField()

ImageField doesn’t require any arguments, file paths or whatever.
It just works. That’s the point of it all.
It looks nice in the admin interface as well:

[image: http://www.ucarecdn.com/84e614e4-8faf-4090-ba3a-83294715434b/]
Obviously, you would want to use Uploadcare field outside an admin.
It’s going to work just as well, but, however, you have to remember to add
{{ form.media }} in the <head> tag of your page:

{{ form.media }}

<form action="" method="post">
 {% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Save"/>
</form>

This is a default Django form property which is going to render any scripts
needed for the form to work, in our case – Uploadcare scripts.

Using it in templates

You can construct url with all effects manually:

{% for photo in photos %}
 {{ photo.title }}
 {{ photo.photo.cdn_url }}-/resize/400x300/-/effect/flip/-/effect/grayscale/
{% endfor %}

Refer to CDN docs [https://uploadcare.com/documentation/cdn/] for more information.

How to use it in command line?

$ ucare -h

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Django Widget

Settings

Besides required pub_key, secret settings there are optional settings,
for example, widget_version or widget_variant:

UPLOADCARE = {
 'pub_key': 'demopublickey',
 'secret': 'demoprivatekey',
 'widget_version': '2.3.1',
 'widget_variant': 'min', // without jQuery
}

PyUploadcare takes assets from Uploadcare CDN by default, e.g.:

<script src="https://ucarecdn.com/widget/x.y.z/uploadcare/uploadcare.full.min.js"></script>

If you don’t want to use hosted assets you have to turn off this feature:

UPLOADCARE = {
 # ...
 'use_hosted_assets': False,
}

In this case local assets will be used.

If you want to provide custom url for assets then you have to specify
widget url:

UPLOADCARE = {
 # ...
 'use_hosted_assets': False,
 'widget_url': 'http://path.to/your/widget.js',
}

Uploadcare widget [https://uploadcare.com/documentation/widget/] will use default upload handler url, unless you specify:

UPLOADCARE = {
 # ...
 'upload_base_url' = 'http://path.to/your/upload/handler',
}

Model Fields

As you will see, with Uploadcare, adding and working with a file field is
just as simple as with a TextField [https://docs.djangoproject.com/en/1.5/ref/models/fields/#django.db.models.TextField]. To attach Uploadcare files to a model,
you can use a FileField or
ImageField.
These fields play by common Django rules. South migrations are supported.

Note

When you call your_model_form.is_valid() or call photo.full_clean()
directly it invokes File.store() method automatically. In other cases
you should store objects manually, e.g:

photo.photo_2x3 = File('a771f854-c2cb-408a-8c36-71af77811f3b')
photo.save()

photo.photo_2x3.store()

FileField

FileField does not require an uploaded file to be any certain format.

from django.db import models

from pyuploadcare.dj import FileField

class Candidate(models.Model):

 resume = FileField()

ImageField

ImageField requires an uploaded file to be an image. An optional parameter
manual_crop enables, if specified, a manual cropping tool: your user can
select a part of an image she wants to use. If its value is an empty string,
the user can select any part of an image; you can also use values like
"3:4" or "200x300" to get exact proportions or dimensions of resulting
image. Consult widget documentation [https://uploadcare.com/documentation/widget/#crop] regarding setting up the manual crop:

from django.db import models

from pyuploadcare.dj import ImageField

class Candidate(models.Model):

 photo = ImageField(blank=True, manual_crop="")

[image: http://www.ucarecdn.com/93b254a3-8c7a-4533-8c01-a946449196cb/-/resize/800/manual_crop.png]

FileGroupField

FileGroupField allows you to upload more than one file at a time. It stores
uploaded files as a group:

from django.db import models

from pyuploadcare.dj import FileGroupField

class Book(models.Model):

 pages = FileGroupField()

ImageGroupField

ImageGroupField allows you to upload more than one image at a time.
It stores uploaded images as a group:

from django.db import models

from pyuploadcare.dj import ImageGroupField

class Gallery(models.Model):

 photos = ImageGroupField()

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Command Line Tool

In order to show help message:

$ ucare -h

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Deprecated Bits

This part of the documentation contains things that eventually will be deleted.

PYUPLOADCARE_USE_HOSTED_ASSETS django setting. Use
UPLOADCARE['use_hosted_assets'] instead.

PYUPLOADCARE_WIDGET_URL django setting. Use UPLOADCARE['widget_url']
instead.

PYUPLOADCARE_UPLOAD_BASE_URL django setting. Use
UPLOADCARE['upload_base_url'] instead.

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Core API

You can use pyuploadcare in any Python project. At first you need assign
your project keys to conf object. After that you will be able
to do direct api calls or use api resources:

>>> import pyuploadcare
>>> pyuploadcare.conf.pub_key = '<your public key>'
>>> pyuploadcare.conf.secret = '<your private key>'
>>> f = pyuploadcare.File('6c5e9526-b0fe-4739-8975-72e8d5ee6342')
>>> f.cdn_url
http://www.ucarecdn.com/6c5e9526-b0fe-4739-8975-72e8d5ee6342/

File API Resource

	
class pyuploadcare.api_resources.File(cdn_url_or_file_id)

	File resource for working with user-uploaded files.

It can take file UUID or group CDN url:

>>> file_ = File('a771f854-c2cb-408a-8c36-71af77811f3b')
>>> file_.cdn_url
http://www.ucarecdn.com/a771f854-c2cb-408a-8c36-71af77811f3b/
>>> print File('https://ucarecdn.com/a771f854-c2cb-408a-8c36-71af77811f3b/-/effect/flip/')
http://www.ucarecdn.com/a771f854-c2cb-408a-8c36-71af77811f3b/-/effect/flip/

	
uuid

	File UUID [1], e.g. a771f854-c2cb-408a-8c36-71af77811f3b.

	
default_effects

	String of default effects that is used by File.cdn_url, e.g.
effect/flip/-/effect/mirror/.

	
class FileFromUrl(token)

	Contains the logic around an upload from url.

It expects uploading token, for instance:

>>> ffu = FileFromUrl(token='a6a2db73-2aaf-4124-b2e7-039aec022e18')
>>> ffu.info()
{
 "status': "progress",
 "done": 226038,
 "total": 452076
}
>>> ffu.update_info()
{
 "status": "success",
 "file_id": "63f652fd-3f40-4b54-996c-f17dc7db5bf1",
 "is_stored": false,
 "done": 452076,
 "uuid": "63f652fd-3f40-4b54-996c-f17dc7db5bf1",
 "original_filename": "olympia.jpg",
 "is_image": true,
 "total": 452076,
 "size": 452076
}
>>> ffu.get_file()
<uploadcare.File 63f652fd-3f40-4b54-996c-f17dc7db5bf1>

But it could be failed:

>>> ffu.update_info()
{
 "status": "error",
 "error": "some error message"
}

	
get_file()

	Returns File instance if upload is completed.

	
info()

	Returns actual information about uploading as dict.

First time it makes API request to get information and keeps
it for further using.

	
update_info()

	Updates and returns information by requesting Uploadcare API.

	
wait(timeout=30, interval=0.3, until_ready=False)

	

	
File.cdn_path(effects=None)

	

	
File.cdn_url

	Returns file’s CDN url.

Usage example:

>>> file_ = File('a771f854-c2cb-408a-8c36-71af77811f3b')
>>> file_.cdn_url
http://www.ucarecdn.com/a771f854-c2cb-408a-8c36-71af77811f3b/

You can set default effects:

>>> file_.default_effects = 'effect/flip/-/effect/mirror/'
>>> file_.cdn_url
http://www.ucarecdn.com/a771f854-c2cb-408a-8c36-71af77811f3b/-/effect/flip/-/effect/mirror/

	
classmethod File.construct_from(file_info)

	Constructs File instance from file information.

For example you have result of
/files/1921953c-5d94-4e47-ba36-c2e1dd165e1a/ API request:

>>> file_info = {
 # ...
 'uuid': '1921953c-5d94-4e47-ba36-c2e1dd165e1a',
 # ...
 }
>>> File.construct_from(file_info)
<uploadcare.File 1921953c-5d94-4e47-ba36-c2e1dd165e1a>

	
File.copy(effects=None, target=None)

	Creates File copy

If target is None, copy file to Uploadcare storage otherwise
copy to target associated with project.
Add effects to self.default_effects if any.

	
File.datetime_removed()

	Returns file’s remove aware datetime in UTC format.

It might do API request once because it depends on info().

	
File.datetime_stored()

	Returns file’s store aware datetime in UTC format.

It might do API request once because it depends on info().

	
File.datetime_uploaded()

	Returns file’s upload aware datetime in UTC format.

It might do API request once because it depends on info().

	
File.delete()

	Deletes file by requesting Uploadcare API.

	
File.filename()

	Returns original file name, e.g. "olympia.jpg".

It might do API request once because it depends on info().

	
File.info()

	Returns all available file information as dict.

First time it makes API request to get file information and keeps it
for further using.

	
File.is_image()

	Returns True if the file is an image.

It might do API request once because it depends on info().

	
File.is_ready()

	Returns True if the file is fully uploaded on S3.

It might do API request once because it depends on info().

	
File.is_removed()

	Returns True if file is removed.

It might do API request once because it depends on info().

	
File.is_stored()

	Returns True if file is stored.

It might do API request once because it depends on info().

	
File.mime_type()

	Returns the file MIME type, e.g. "image/png".

It might do API request once because it depends on info().

	
File.size()

	Returns the file size in bytes.

It might do API request once because it depends on info().

	
File.store()

	Stores file by requesting Uploadcare API.

Uploaded files do not immediately appear on Uploadcare CDN.
Let’s consider steps until file appears on CDN:

	first file is uploaded into https://upload.uploadcare.com/;

	after that file is available by API and its is_public,
is_ready are False. Now you can store it;

	is_ready will be True when file will be fully uploaded
on S3.

	
File.update_info()

	Updates and returns file information by requesting Uploadcare API.

	
classmethod File.upload(file_obj)

	Uploads a file and returns File instance.

	
classmethod File.upload_from_url(url)

	Uploads file from given url and returns FileFromUrl instance.

	
classmethod File.upload_from_url_sync(url, timeout=30, interval=0.3, until_ready=False)

	Uploads file from given url and returns File instance.

File List API Resource

	
class pyuploadcare.api_resources.FileList(offset=0, count=None, stored=None, removed=None)

	List of File resources.

This class provides iteration over all uploaded files. You can specify:

	offset – an offset into the list of returned items;

	count – a limit on the number of objects to be returned;

	stored – True to include only removed files,
False to exclude;

	removed – True to include only stored files,
False to exclude.

Usage example:

>>> files_from_second_to_end = FileList(offset=1)
>>> for file_ in files_from_second_to_end:
>>> print file_

	
offset

	

	
stored

	

	
removed

	

	
class FileListIterator(offset, count=None, stored=None, removed=None)

	Iterator that yields File instances while API pages are found.

It caches API result for particular page between yields.

	
next()

	

	
classmethod FileList.retrieve(page, limit=20, stored=None, removed=None)

	Returns list of files’ raw information by requesting Uploadcare API.

File Group API Resource

	
class pyuploadcare.api_resources.FileGroup(cdn_url_or_group_id)

	File Group resource for working with user-uploaded group of files.

It can take group id or group CDN url:

>>> file_group = FileGroup('0513dda0-582f-447d-846f-096e5df9e2bb~2')

You can iterate file_group or get File instance by key:

>>> [file_ for file_ in file_group]
[<uploadcare.File 6c5e9526-b0fe-4739-8975-72e8d5ee6342>, None]
>>> file_group[0]
<uploadcare.File 6c5e9526-b0fe-4739-8975-72e8d5ee6342>
>>> len(file_group)
2

But slicing is not supported because FileGroup is immutable:

>>> file_group[:]
TypeError: slicing is not supported

If file was deleted then you will get None:

>>> file_group[1]
None

	
id

	Group id, e.g. 0513dda0-582f-447d-846f-096e5df9e2bb~2.

	
cdn_url

	Returns group’s CDN url.

Usage example:

>>> file_group = FileGroup('0513dda0-582f-447d-846f-096e5df9e2bb~2')
>>> file_group.cdn_url
http://www.ucarecdn.com/0513dda0-582f-447d-846f-096e5df9e2bb~2/

	
classmethod construct_from(group_info)

	Constructs FileGroup instance from group information.

	
classmethod create(files)

	Creates file group and returns FileGroup instance.

It expects iterable object that contains File instances, e.g.:

>>> file_1 = File('6c5e9526-b0fe-4739-8975-72e8d5ee6342')
>>> file_2 = File('a771f854-c2cb-408a-8c36-71af77811f3b')
>>> FileGroup.create((file_1, file_2))
<uploadcare.FileGroup 0513dda0-6666-447d-846f-096e5df9e2bb~2>

	
datetime_created()

	Returns file group’s create aware datetime in UTC format.

	
datetime_stored()

	Returns file group’s store aware datetime in UTC format.

	
file_cdn_urls

	Returns CDN urls of all files from group without API requesting.

Usage example:

>>> file_group = FileGroup('0513dda0-582f-447d-846f-096e5df9e2bb~2')
>>> file_group.file_cdn_urls[0]
'http://www.ucarecdn.com/0513dda0-582f-447d-846f-096e5df9e2bb~2/nth/0/'

	
info()

	Returns all available group information as dict.

First time it makes API request to get group information and keeps it
for further using.

	
is_stored()

	Returns True if file is stored.

It might do API request once because it depends on info().

	
store()

	Stores all group’s files by requesting Uploadcare API.

Uploaded files do not immediately appear on Uploadcare CDN.

	
update_info()

	Updates and returns group information by requesting Uploadcare API.

API Clients

Uploadcare REST client.

It is JSON REST request abstraction layer that is used by the
pyuploadcare.api_resources.

	
pyuploadcare.api.rest_request(verb, path, data=None, timeout=<object object>, retry_throttled=<object object>)

	Makes REST API request and returns response as dict.

It provides auth headers as well and takes settings from conf module.

Make sure that given path does not contain leading slash.

Usage example:

>>> rest_request('GET', 'files/?limit=10')
{
 'next': 'https://api.uploadcare.com/files/?limit=10&page=2',
 'total': 1241,
 'page': 1,
 'pages': 125,
 'per_page': 10,
 'previous': None,
 'results': [
 # ...
 {
 # ...
 'uuid': 1921953c-5d94-4e47-ba36-c2e1dd165e1a,
 # ...
 },
 # ...
]
}

	
pyuploadcare.api.uploading_request(verb, path, data=None, files=None, timeout=<object object>)

	Makes Uploading API request and returns response as dict.

It takes settings from conf module.

Make sure that given path does not contain leading slash.

Usage example:

>>> file_obj = open('photo.jpg', 'rb')
>>> uploading_request('POST', 'base/', files={'file': file_obj})
{
 'file': '9b9f4483-77b8-40ae-a198-272ba6280004'
}
>>> File('9b9f4483-77b8-40ae-a198-272ba6280004')

Exceptions

	
exception pyuploadcare.exceptions.APIConnectionError(data=u'', *args, **kwargs)

	Network communication with Uploadcare errors.

	
exception pyuploadcare.exceptions.APIError(data=u'', *args, **kwargs)

	API errors, e.g. bad json.

	
exception pyuploadcare.exceptions.AuthenticationError(data=u'', *args, **kwargs)

	Authentication with Uploadcare’s API errors.

	
exception pyuploadcare.exceptions.InvalidRequestError(data=u'', *args, **kwargs)

	Invalid parameters errors, e.g. status 404.

	
exception pyuploadcare.exceptions.ThrottledRequestError(response)

	Raised when request was throttled.

	
exception pyuploadcare.exceptions.TimeoutError(data=u'', *args, **kwargs)

	Timed out errors.

It raises when user wants to wait the result of api requests, e.g.:

$ ucare store --wait 6c5e9526-b0fe-4739-8975-72e8d5ee6342

	
exception pyuploadcare.exceptions.UploadError(data=u'', *args, **kwargs)

	Upload errors.

It raises when user wants to wait the result of:

$ ucare upload_from_url --wait http://path.to/file.jpg

	
exception pyuploadcare.exceptions.UploadcareException(data=u'', *args, **kwargs)

	Base exception class of library.

	[1]	Universally unique identifier according to RFC 4122.

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Django Widget API

Model Fields

Form Fields

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyUploadcare 1.2.15 documentation

Command Line Tool API

	
pyuploadcare.ucare_cli.bool_or_none(value)

	

	
pyuploadcare.ucare_cli.create_group(arg_namespace)

	

	
pyuploadcare.ucare_cli.delete_file(arg_namespace)

	

	
pyuploadcare.ucare_cli.get_file(arg_namespace)

	

	
pyuploadcare.ucare_cli.list_files(arg_namespace=None)

	

	
pyuploadcare.ucare_cli.load_config_from_args(arg_namespace)

	

	
pyuploadcare.ucare_cli.load_config_from_file(filename)

	

	
pyuploadcare.ucare_cli.main(arg_namespace=None, config_file_names=(u'~/.uploadcare', u'uploadcare.ini'))

	

	
pyuploadcare.ucare_cli.store_file(arg_namespace)

	

	
pyuploadcare.ucare_cli.ucare_argparser()

	

	
pyuploadcare.ucare_cli.upload(arg_namespace)

	

	
pyuploadcare.ucare_cli.upload_from_url(arg_namespace)

	

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	PyUploadcare 1.2.15 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyuploadcare	

 	
 	
 pyuploadcare.api	

 	
 	
 pyuploadcare.exceptions	

 	
 	
 pyuploadcare.ucare_cli	

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	PyUploadcare 1.2.15 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	APIConnectionError

 	APIError

 	

 	AuthenticationError

B

 	

 	bool_or_none() (in module pyuploadcare.ucare_cli)

C

 	

 	cdn_path() (pyuploadcare.api_resources.File method)

 	cdn_url (pyuploadcare.api_resources.File attribute)

 	

 	(pyuploadcare.api_resources.FileGroup attribute)

 	construct_from() (pyuploadcare.api_resources.File class method)

 	

 	(pyuploadcare.api_resources.FileGroup class method)

 	

 	copy() (pyuploadcare.api_resources.File method)

 	create() (pyuploadcare.api_resources.FileGroup class method)

 	create_group() (in module pyuploadcare.ucare_cli)

D

 	

 	datetime_created() (pyuploadcare.api_resources.FileGroup method)

 	datetime_removed() (pyuploadcare.api_resources.File method)

 	datetime_stored() (pyuploadcare.api_resources.File method)

 	

 	(pyuploadcare.api_resources.FileGroup method)

 	datetime_uploaded() (pyuploadcare.api_resources.File method)

 	

 	default_effects (File attribute)

 	delete() (pyuploadcare.api_resources.File method)

 	delete_file() (in module pyuploadcare.ucare_cli)

F

 	

 	File (class in pyuploadcare.api_resources)

 	File.FileFromUrl (class in pyuploadcare.api_resources)

 	file_cdn_urls (pyuploadcare.api_resources.FileGroup attribute)

 	FileGroup (class in pyuploadcare.api_resources)

 	

 	FileList (class in pyuploadcare.api_resources)

 	FileList.FileListIterator (class in pyuploadcare.api_resources)

 	filename() (pyuploadcare.api_resources.File method)

G

 	

 	get_file() (in module pyuploadcare.ucare_cli)

 	

 	(pyuploadcare.api_resources.File.FileFromUrl method)

I

 	

 	id (FileGroup attribute)

 	info() (pyuploadcare.api_resources.File method)

 	

 	(pyuploadcare.api_resources.File.FileFromUrl method)

 	(pyuploadcare.api_resources.FileGroup method)

 	InvalidRequestError

 	is_image() (pyuploadcare.api_resources.File method)

 	

 	is_ready() (pyuploadcare.api_resources.File method)

 	is_removed() (pyuploadcare.api_resources.File method)

 	is_stored() (pyuploadcare.api_resources.File method)

 	

 	(pyuploadcare.api_resources.FileGroup method)

L

 	

 	list_files() (in module pyuploadcare.ucare_cli)

 	load_config_from_args() (in module pyuploadcare.ucare_cli)

 	

 	load_config_from_file() (in module pyuploadcare.ucare_cli)

M

 	

 	main() (in module pyuploadcare.ucare_cli)

 	

 	mime_type() (pyuploadcare.api_resources.File method)

N

 	

 	next() (pyuploadcare.api_resources.FileList.FileListIterator method)

O

 	

 	offset (FileList attribute)

P

 	

 	pyuploadcare.api (module)

 	pyuploadcare.exceptions (module)

 	

 	pyuploadcare.ucare_cli (module)

R

 	

 	removed (FileList attribute)

 	rest_request() (in module pyuploadcare.api)

 	

 	retrieve() (pyuploadcare.api_resources.FileList class method)

S

 	

 	size() (pyuploadcare.api_resources.File method)

 	store() (pyuploadcare.api_resources.File method)

 	

 	(pyuploadcare.api_resources.FileGroup method)

 	

 	store_file() (in module pyuploadcare.ucare_cli)

 	stored (FileList attribute)

T

 	

 	ThrottledRequestError

 	

 	TimeoutError

U

 	

 	ucare_argparser() (in module pyuploadcare.ucare_cli)

 	update_info() (pyuploadcare.api_resources.File method)

 	

 	(pyuploadcare.api_resources.File.FileFromUrl method)

 	(pyuploadcare.api_resources.FileGroup method)

 	upload() (in module pyuploadcare.ucare_cli)

 	

 	(pyuploadcare.api_resources.File class method)

 	upload_from_url() (in module pyuploadcare.ucare_cli)

 	

 	(pyuploadcare.api_resources.File class method)

 	upload_from_url_sync() (pyuploadcare.api_resources.File class method)

 	

 	UploadcareException

 	UploadError

 	uploading_request() (in module pyuploadcare.api)

 	uuid (File attribute)

W

 	

 	wait() (pyuploadcare.api_resources.File.FileFromUrl method)

 Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		PyUploadcare 1.2.15 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Uploadcare Ltd.
 Created using Sphinx 1.3.1.

_static/down.png

_static/plus.png

